home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
AmigActive 2
/
AACD 2.iso
/
AACD
/
Programming
/
fpc
/
compiler
/
rai386.pas
< prev
next >
Wrap
Pascal/Delphi Source File
|
1998-09-24
|
140KB
|
3,485 lines
{
$Id: rai386.pas,v 1.2.2.1 1998/05/25 22:58:50 carl Exp $
Copyright (c) 1997-98 by Carl Eric Codere
Does the parsing process for the intel styled inline assembler.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
****************************************************************************
}
Unit Rai386;
{**********************************************************************}
{ WARNING }
{**********************************************************************}
{ Any modification in the order or removal of terms in the tables }
{ in i386.pas and intasmi3.pas will BREAK the code in this unit, }
{ unless the appropriate changes are made to this unit. Addition }
{ of terms though, will not change the code herein. }
{**********************************************************************}
{--------------------------------------------------------------------}
{ LEFT TO DO: }
{--------------------------------------------------------------------}
{ o Add support for floating point opcodes. }
{ o Handle module overrides also... such as crt.white or }
{ crt.delay and local typed constants. }
{ o Handle label references }
{ o Add support for TP styled segment overrides, when the opcode }
{ table will be completed. }
{ o Add imul,shld and shrd support with references and CL }
{ i386.pas requires to be updated to do this. }
{ o Support for (* *) tp styled comments, this support should be }
{ added in asmgetchar in scanner.pas (it cannot be implemented }
{ here without causing errors such as in : }
{ (* "openbrace" AComment *) }
{ (presently an infinite loop will be created if a (* styled }
{ comment is found). }
{ o Bugfix of ao_imm8s for IMUL. (Currently the 3 operand imul will }
{ be considered as invalid because I use ao_imm8 and the table }
{ uses ao_imm8s). }
{--------------------------------------------------------------------}
Interface
uses
tree,i386;
function assemble: ptree;
const
{ this variable is TRUE if the lookup tables have already been setup }
{ for fast access. On the first call to assemble the tables are setup }
{ and stay set up. }
_asmsorted: boolean = FALSE;
firstreg = R_EAX;
lastreg = R_ST7;
type
tiasmops = array[firstop..lastop] of string[7];
piasmops = ^tiasmops;
var
{ sorted tables of opcodes }
iasmops: piasmops;
{ uppercased tables of registers }
iasmregs: array[firstreg..lastreg] of string[6];
Implementation
Uses
aasm,globals,AsmUtils,strings,hcodegen,scanner,
cobjects,verbose;
type
tinteltoken = (
AS_NONE,AS_LABEL,AS_LLABEL,AS_STRING,AS_HEXNUM,AS_OCTALNUM,
AS_BINNUM,AS_COMMA,AS_LBRACKET,AS_RBRACKET,AS_LPAREN,
AS_RPAREN,AS_COLON,AS_DOT,AS_PLUS,AS_MINUS,AS_STAR,AS_INTNUM,
AS_SEPARATOR,AS_ID,AS_REGISTER,AS_OPCODE,AS_SLASH,
{------------------ Assembler directives --------------------}
AS_DB,AS_DW,AS_DD,AS_END,
{------------------ Assembler Operators --------------------}
AS_BYTE,AS_WORD,AS_DWORD,AS_QWORD,AS_TBYTE,AS_NEAR,AS_FAR,
AS_HIGH,AS_LOW,AS_OFFSET,AS_SEG,AS_TYPE,AS_PTR,AS_MOD,AS_SHL,AS_SHR,AS_NOT,
AS_AND,AS_OR,AS_XOR);
tasmkeyword = string[6];
const
{ These tokens should be modified accordingly to the modifications }
{ in the different enumerations. }
firstdirective = AS_DB;
lastdirective = AS_END;
firstoperator = AS_BYTE;
lastoperator = AS_XOR;
firstsreg = R_CS;
lastsreg = R_SS;
{ this is a hack to accept all opcodes }
{ in the opcode table. }
{ check is done until A_POPFD }
{ otherwise no check. }
lastop_in_table = A_POPFD;
_count_asmdirectives = longint(lastdirective)-longint(firstdirective);
_count_asmoperators = longint(lastoperator)-longint(firstoperator);
_count_asmprefixes = 5;
_count_asmspecialops = 25;
_count_asmoverrides = 3;
_asmdirectives : array[0.._count_asmdirectives] of tasmkeyword =
('DB','DW','DD','END');
{ problems with shl,shr,not,and,or and xor, they are }
{ context sensitive. }
_asmoperators : array[0.._count_asmoperators] of tasmkeyword = (
'BYTE','WORD','DWORD','QWORD','TBYTE','NEAR','FAR','HIGH',
'LOW','OFFSET','SEG','TYPE','PTR','MOD','SHL','SHR','NOT','AND',
'OR','XOR');
{------------------ Missing opcodes from std list ----------------}
_asmprefixes: array[0.._count_asmprefixes] of tasmkeyword = (
'REPNE','REPE','REP','REPZ','REPNZ','LOCK');
_asmoverrides: array[0.._count_asmoverrides] of tasmkeyword =
('SEGCS','SEGDS','SEGES','SEGSS');
_overridetokens: array[0.._count_asmoverrides] of tregister =
(R_CS,R_DS,R_ES,R_SS);
_prefixtokens: array[0.._count_asmprefixes] of tasmop = (
A_REPNE,A_REPE,A_REP,A_REPE,A_REPNE,A_LOCK);
_specialops: array[0.._count_asmspecialops] of tasmkeyword = (
'CMPSB','CMPSW','CMPSD','INSB','INSW','INSD','OUTSB','OUTSW','OUTSD',
'SCASB','SCASW','SCASD','STOSB','STOSW','STOSD','MOVSB','MOVSW','MOVSD',
'LODSB','LODSW','LODSD','LOCK','SEGCS','SEGDS','SEGES','SEGSS');
_specialopstokens: array[0.._count_asmspecialops] of tasmop = (
A_CMPS,A_CMPS,A_CMPS,A_INS,A_INS,A_INS,A_OUTS,A_OUTS,A_OUTS,
A_SCAS,A_SCAS,A_SCAS,A_STOS,A_STOS,A_STOS,A_MOVS,A_MOVS,A_MOVS,
A_LODS,A_LODS,A_LODS,A_LOCK,A_NONE,A_NONE,A_NONE,A_NONE);
{------------------------------------------------------------------}
{ register type definition table for easier searching }
_regtypes:array[firstreg..lastreg] of longint =
(ao_reg32,ao_reg32,ao_reg32,ao_reg32,ao_reg32,ao_reg32,ao_reg32,ao_reg32,
ao_reg16,ao_reg16,ao_reg16,ao_reg16,ao_reg16,ao_reg16,ao_reg16,ao_reg16,
ao_reg8,ao_reg8,ao_reg8,ao_reg8,ao_reg8,ao_reg8,ao_reg8,ao_reg8,
ao_none,ao_sreg2,ao_sreg2,ao_sreg2,ao_sreg3,ao_sreg3,ao_sreg2,
ao_floatacc,ao_floatacc,ao_floatreg,ao_floatreg,ao_floatreg,ao_floatreg,
ao_floatreg,ao_floatreg,ao_floatreg);
_regsizes: array[firstreg..lastreg] of topsize =
(S_L,S_L,S_L,S_L,S_L,S_L,S_L,S_L,
S_W,S_W,S_W,S_W,S_W,S_W,S_W,S_W,
S_B,S_B,S_B,S_B,S_B,S_B,S_B,S_B,
{ segment register }
S_W,S_W,S_W,S_W,S_W,S_W,S_W,
{ can also be S_S or S_T - must be checked at run-time }
S_Q,S_Q,S_Q,S_Q,S_Q,S_Q,S_Q,S_Q,S_Q);
_constsizes: array[S_NO..S_S] of longint =
(0,ao_imm8,ao_imm16,ao_imm32,0,0,0,0,ao_imm32);
const
newline = #10;
firsttoken : boolean = TRUE;
operandnum : byte = 0;
var
{ context for SHL,SHR,AND,NOT,OR,XOR operators }
{ if set to true GetToken will return these }
{ as operators, otherwise will return these as }
{ opcodes. }
inexpression: boolean;
p : paasmoutput;
actasmtoken: tinteltoken;
actasmpattern: string;
c: char;
Instr: TInstruction;
labellist: TAsmLabelList;
old_exit : pointer;
Procedure SetupTables;
{ creates uppercased symbol tables for speed access }
var
i: tasmop;
j: tregister;
Begin
Message(assem_d_creating_lookup_tables);
{ opcodes }
new(iasmops);
for i:=firstop to lastop do
iasmops^[i] := upper(int_op2str[i]);
{ opcodes }
for j:=firstreg to lastreg do
iasmregs[j] := upper(int_reg2str[j]);
end;
procedure rai386_exit;{$ifndef FPC}far;{$endif}
begin
if assigned(iasmops) then
dispose(iasmops);
exitproc:=old_exit;
end;
{---------------------------------------------------------------------}
{ Routines for the tokenizing }
{---------------------------------------------------------------------}
function is_asmopcode(const s: string):Boolean;
{*********************************************************************}
{ FUNCTION is_asmopcode(s: string):Boolean }
{ Description: Determines if the s string is a valid opcode }
{ if so returns TRUE otherwise returns FALSE. }
{*********************************************************************}
var
i: tasmop;
j: byte;
Begin
is_asmopcode := FALSE;
for i:=firstop to lastop do
begin
if s = iasmops^[i] then
begin
is_asmopcode:=TRUE;
exit;
end;
end;
{ not found yet, search for extended opcodes }
for j:=0 to _count_asmspecialops do
Begin
if s = _specialops[j] then
Begin
is_asmopcode:=TRUE;
exit;
end;
end;
end;
Procedure is_asmdirective(const s: string; var token: tinteltoken);
{*********************************************************************}
{ FUNCTION is_asmdirective(s: string; var token: tinteltoken):Boolean }
{ Description: Determines if the s string is a valid directive }
{ (an operator can occur in operand fields, while a directive cannot) }
{ if so returns the directive token, otherwise does not change token.}
{*********************************************************************}
var
i:byte;
Begin
for i:=0 to _count_asmdirectives do
begin
if s=_asmdirectives[i] then
begin
token := tinteltoken(longint(firstdirective)+i);
exit;
end;
end;
end;
Procedure is_asmoperator(const s: string; var token: tinteltoken);
{*********************************************************************}
{ FUNCTION is_asmoperator(s: string; var token: tinteltoken): Boolean}
{ Description: Determines if the s string is a valid operator }
{ (an operator can occur in operand fields, while a directive cannot) }
{ if so returns the operator token, otherwise does not change token. }
{*********************************************************************}
var
i:longint;
Begin
for i:=0 to _count_asmoperators do
begin
if s=_asmoperators[i] then
begin
token := tinteltoken(longint(firstoperator)+i);
exit;
end;
end;
end;
Procedure is_register(const s: string; var token: tinteltoken);
{*********************************************************************}
{ PROCEDURE is_register(s: string; var token: tinteltoken); }
{ Description: Determines if the s string is a valid register, if }
{ so return token equal to A_REGISTER, otherwise does not change token}
{*********************************************************************}
Var
i: tregister;
Begin
for i:=firstreg to lastreg do
begin
if s=iasmregs[i] then
begin
token := AS_REGISTER;
exit;
end;
end;
end;
Function GetToken: tinteltoken;
{*********************************************************************}
{ FUNCTION GetToken: tinteltoken; }
{ Description: This routine returns intel assembler tokens and }
{ does some minor syntax error checking. }
{*********************************************************************}
var
j: integer;
token: tinteltoken;
forcelabel: boolean;
errorflag : boolean;
begin
errorflag := FALSE;
forcelabel := FALSE;
actasmpattern :='';
{* INIT TOKEN TO NOTHING *}
token := AS_NONE;
{ while space and tab , continue scan... }
while (c in [' ',#9]) do
c := asmgetchar;
{ Possiblities for first token in a statement: }
{ Local Label, Label, Directive, Prefix or Opcode.... }
if firsttoken and not (c in [newline,#13,'{',';']) then
begin
firsttoken := FALSE;
if c = '@' then
begin
token := AS_LLABEL; { this is a local label }
{ Let us point to the next character }
c := asmgetchar;
end;
while c in ['A'..'Z','a'..'z','0'..'9','_','@'] do
begin
{ if there is an at_sign, then this must absolutely be a label }
if c = '@' then forcelabel:=TRUE;
actasmpattern := actasmpattern + c;
c := asmgetchar;
end;
uppervar(actasmpattern);
if c = ':' then
begin
case token of
AS_NONE: token := AS_LABEL;
AS_LLABEL: ; { do nothing }
end; { end case }
{ let us point to the next character }
c := asmgetchar;
gettoken := token;
exit;
end;
{ Are we trying to create an identifier with }
{ an at-sign...? }
if forcelabel then
Message(assem_e_none_label_contain_at);
If is_asmopcode(actasmpattern) then
Begin
gettoken := AS_OPCODE;
{ check if we are in an expression }
{ then continue with asm directives }
if not inexpression then
exit;
end;
is_asmdirective(actasmpattern, token);
if (token <> AS_NONE) then
Begin
gettoken := token;
exit
end
else
begin
gettoken := AS_NONE;
Message1(assem_e_invalid_operand,actasmpattern);
end;
end
else { else firsttoken }
{ Here we must handle all possible cases }
begin
case c of
'@': { possiblities : - local label reference , such as in jmp @local1 }
{ - @Result, @Code or @Data special variables. }
begin
actasmpattern := c;
c:= asmgetchar;
while c in ['A'..'Z','a'..'z','0'..'9','_','@'] do
begin
actasmpattern := actasmpattern + c;
c := asmgetchar;
end;
uppervar(actasmpattern);
gettoken := AS_ID;
exit;
end;
{ identifier, register, opcode, prefix or directive }
'A'..'Z','a'..'z','_': begin
actasmpattern := c;
c:= asmgetchar;
while c in ['A'..'Z','a'..'z','0'..'9','_'] do
begin
actasmpattern := actasmpattern + c;
c := asmgetchar;
end;
uppervar(actasmpattern);
If is_asmopcode(actasmpattern) then
Begin
gettoken := AS_OPCODE;
{ if we are not in a constant }
{ expression than this is an }
{ opcode. }
if not inexpression then
exit;
end;
is_register(actasmpattern, token);
is_asmoperator(actasmpattern,token);
is_asmdirective(actasmpattern,token);
{ if found }
if (token <> AS_NONE) then
begin
gettoken := token;
exit;
end
{ this is surely an identifier }
else
token := AS_ID;
gettoken := token;
exit;
end;
{ override operator... not supported }
'&': begin
Message(assem_w_override_op_not_supported);
c:=asmgetchar;
gettoken := AS_NONE;
end;
{ string or character }
'''' :
begin
actasmpattern:='';
while true do
begin
if c = '''' then
begin
c:=asmgetchar;
if c=newline then
begin
Message(scan_f_string_exceeds_line);
break;
end;
repeat
if c=''''then
begin
c:=asmgetchar;
if c='''' then
begin
actasmpattern:=actasmpattern+'''';
c:=asmgetchar;
if c=newline then
begin
Message(scan_f_string_exceeds_line);
break;
end;
end
else break;
end
else
begin
actasmpattern:=actasmpattern+c;
c:=asmgetchar;
if c=newline then
begin
Message(scan_f_string_exceeds_line);
break
end;
end;
until false; { end repeat }
end
else break; { end if }
end; { end while }
token:=AS_STRING;
gettoken := token;
exit;
end;
{ string or character }
'"' :
begin
actasmpattern:='';
while true do
begin
if c = '"' then
begin
c:=asmgetchar;
if c=newline then
begin
Message(scan_f_string_exceeds_line);
break;
end;
repeat
if c='"'then
begin
c:=asmgetchar;
if c='"' then
begin
actasmpattern:=actasmpattern+'"';
c:=asmgetchar;
if c=newline then
begin
Message(scan_f_string_exceeds_line);
break;
end;
end
else break;
end
else
begin
actasmpattern:=actasmpattern+c;
c:=asmgetchar;
if c=newline then
begin
Message(scan_f_string_exceeds_line);
break
end;
end;
until false; { end repeat }
end
else break; { end if }
end; { end while }
token := AS_STRING;
gettoken := token;
exit;
end;
'$' : begin
c:=asmgetchar;
while c in ['0'..'9','A'..'F','a'..'f'] do
begin
actasmpattern := actasmpattern + c;
c := asmgetchar;
end;
gettoken := AS_HEXNUM;
exit;
end;
',' : begin
gettoken := AS_COMMA;
c:=asmgetchar;
exit;
end;
'[' : begin
gettoken := AS_LBRACKET;
c:=asmgetchar;
exit;
end;
']' : begin
gettoken := AS_RBRACKET;
c:=asmgetchar;
exit;
end;
'(' : begin
gettoken := AS_LPAREN;
c:=asmgetchar;
exit;
end;
')' : begin
gettoken := AS_RPAREN;
c:=asmgetchar;
exit;
end;
':' : begin
gettoken := AS_COLON;
c:=asmgetchar;
exit;
end;
'.' : begin
gettoken := AS_DOT;
c:=asmgetchar;
exit;
end;
'+' : begin
gettoken := AS_PLUS;
c:=asmgetchar;
exit;
end;
'-' : begin
gettoken := AS_MINUS;
c:=asmgetchar;
exit;
end;
'*' : begin
gettoken := AS_STAR;
c:=asmgetchar;
exit;
end;
'/' : begin
gettoken := AS_SLASH;
c:=asmgetchar;
exit;
end;
'0'..'9': begin
{ this flag indicates if there was an error }
{ if so, then we use a default value instead.}
errorflag := false;
actasmpattern := c;
c := asmgetchar;
{ Get the possible characters }
while c in ['0'..'9','A'..'F','a'..'f'] do
begin
actasmpattern := actasmpattern + c;
c:= asmgetchar;
end;
{ Get ending character }
uppervar(actasmpattern);
c:=upcase(c);
{ possibly a binary number. }
if (actasmpattern[length(actasmpattern)] = 'B') and (c <> 'H') then
Begin
{ Delete the last binary specifier }
delete(actasmpattern,length(actasmpattern),1);
for j:=1 to length(actasmpattern) do
if not (actasmpattern[j] in ['0','1']) then
begin
Message1(assem_e_error_in_binary_const,actasmpattern);
errorflag := TRUE;
end;
{ if error, then suppose a binary value of zero. }
if errorflag then
actasmpattern := '0';
gettoken := AS_BINNUM;
exit;
end
else
Begin
case c of
'O': Begin
for j:=1 to length(actasmpattern) do
if not (actasmpattern[j] in ['0'..'7']) then
begin
Message1(assem_e_error_in_octal_const,actasmpattern);
errorflag := TRUE;
end;
{ if error, then suppose an octal value of zero. }
if errorflag then
actasmpattern := '0';
gettoken := AS_OCTALNUM;
c := asmgetchar;
exit;
end;
'H': Begin
for j:=1 to length(actasmpattern) do
if not (actasmpattern[j] in ['0'..'9','A'..'F']) then
begin
Message1(assem_e_error_in_hex_const,actasmpattern);
errorflag := TRUE;
end;
{ if error, then suppose an hex value of zero. }
if errorflag then
actasmpattern := '0';
gettoken := AS_HEXNUM;
c := asmgetchar;
exit;
end;
else { must be an integer number }
begin
for j:=1 to length(actasmpattern) do
if not (actasmpattern[j] in ['0'..'9']) then
begin
Message1(assem_e_error_in_integer_const,actasmpattern);
errorflag := TRUE;
end;
{ if error, then suppose an int value of zero. }
if errorflag then
actasmpattern := '0';
gettoken := AS_INTNUM;
exit;
end;
end; { end case }
end; { end if }
end;
';','{',#13,newline : begin
c:=asmgetchar;
firsttoken := TRUE;
gettoken:=AS_SEPARATOR;
end;
else
Begin
Message(scan_f_illegal_char);
end;
end; { end case }
end; { end else if }
end;
{---------------------------------------------------------------------}
{ Routines for the output }
{---------------------------------------------------------------------}
{ returns an appropriate ao_xxxx flag indicating the type }
{ of operand. }
function findtype(Var Opr: TOperand): longint;
Begin
With Opr do
Begin
case operandtype of
OPR_REFERENCE: Begin
if assigned(ref.symbol) then
{ check if in local label list }
{ if so then it is considered }
{ as a displacement. }
Begin
if labellist.search(ref.symbol^) <> nil then
findtype := ao_disp
else
findtype := ao_mem; { probably a mem ref. }
end
else
findtype := ao_mem;
end;
OPR_CONSTANT: Begin
{ check if there is not already a default size }
if opr.size <> S_NO then
Begin
findtype := _constsizes[opr.size];
exit;
end;
if val < $ff then
Begin
findtype := ao_imm8;
opr.size := S_B;
end
else if val < $ffff then
Begin
findtype := ao_imm16;
opr.size := S_W;
end
else
Begin
findtype := ao_imm32;
opr.size := S_L;
end
end;
OPR_REGISTER: Begin
findtype := _regtypes[reg];
exit;
end;
OPR_NONE: Begin
findtype := 0;
end;
else
Begin
Message(assem_f_internal_error_in_findtype);
end;
end;
end;
end;
Procedure ConcatLabeledInstr(var instr: TInstruction);
Begin
if (instr.getinstruction in [A_JO,A_JNO,A_JB,A_JC,A_JNAE,
A_JNB,A_JNC,A_JAE,A_JE,A_JZ,A_JNE,A_JNZ,A_JBE,A_JNA,A_JNBE,
A_JA,A_JS,A_JNS,A_JP,A_JPE,A_JNP,A_JPO,A_JL,A_JNGE,A_JNL,A_JGE,
A_JLE,A_JNG,A_JNLE,A_JG,A_JCXZ,A_JECXZ,A_LOOP,A_LOOPZ,A_LOOPE,
A_LOOPNZ,A_LOOPNE,A_MOV,A_JMP,A_CALL]) then
Begin
if instr.numops > 1 then
Message(assem_e_invalid_labeled_opcode)
else if instr.operands[1].operandtype <> OPR_LABINSTR then
Message(assem_e_invalid_labeled_opcode)
else if (instr.operands[1].operandtype = OPR_LABINSTR) and
(instr.numops = 1) then
if assigned(instr.operands[1].hl) then
ConcatLabel(p,instr.getinstruction, instr.operands[1].hl)
else
Message(assem_f_internal_error_in_findtype);
end
else if instr.getinstruction = A_MOV then
Begin
{ MOV to rel8 }
end
else
Message(assem_e_invalid_operand);
end;
Procedure HandleExtend(var instr: TInstruction);
{ Handles MOVZX, MOVSX ... }
var
instruc: tasmop;
opsize: topsize;
Begin
instruc:=instr.getinstruction;
{ return the old types ..}
{ these tokens still point to valid intel strings, }
{ but we must convert them to TRUE intel tokens }
if instruc in [A_MOVSB,A_MOVSBL,A_MOVSBW,A_MOVSWL] then
instruc := A_MOVSX;
if instruc in [A_MOVZB,A_MOVZWL] then
instruc := A_MOVZX;
With instr do
Begin
if operands[1].size = S_B then
Begin
if operands[2].size = S_L then
opsize := S_BL
else
if operands[2].size = S_W then
opsize := S_BW
else
begin
Message(assem_e_invalid_size_movzx);
exit;
end;
end
else
if operands[1].size = S_W then
Begin
if operands[2].size = S_L then
opsize := S_WL
else
begin
Message(assem_e_invalid_size_movzx);
exit;
end;
end
else
begin
Message(assem_e_invalid_size_movzx);
exit;
end;
if operands[1].operandtype = OPR_REGISTER then
Begin
if operands[2].operandtype <> OPR_REGISTER then
Message(assem_e_invalid_opcode)
else
p^.concat(new(pai386,op_reg_reg(instruc,opsize,
operands[1].reg,operands[2].reg)));
end
else
if operands[1].operandtype = OPR_REFERENCE then
Begin
if operands[2].operandtype <> OPR_REGISTER then
Message(assem_e_invalid_opcode)
else
p^.concat(new(pai386,op_ref_reg(instruc,opsize,
newreference(operands[1].ref),operands[2].reg)));
end
end; { end with }
end;
Procedure ConcatOpCode(var instr: TInstruction);
{*********************************************************************}
{ First Pass: }
{ if instr = Lxxx with a 16bit offset, we emit an error. }
{ If the instruction is INS,IN,OUT,OUTS,RCL,ROL,RCR,ROR, }
{ SAL,SAR,SHL,SHR,SHLD,SHRD,DIV,IDIV,BT,BTC,BTR,BTS,INT, }
{ RET,ENTER,SCAS,CMPS,STOS,LODS,FNSTSW,FSTSW. }
{ set up the optypes variables manually, as well as setting }
{ operand sizes. }
{ Second pass: }
{ Check if the combination of opcodes and operands are valid, using }
{ the opcode table. }
{ Third pass: }
{ If there was no error on the 2nd pass , then we check the }
{ following: }
{ - If this is a 0 operand opcode }
{ we verify if it is a string opcode, if so we emit a size also}
{ otherwise simply emit the opcode by itself. }
{ - If this is a 1 operand opcode, and it is a reference, we make }
{ sure that the operand size is valid; we emit the opcode. }
{ - If this is a two operand opcode }
{ o if the opcode is MOVSX or MOVZX then we handle it specially }
{ o we check the operand types (most important combinations): }
{ if reg,reg we make sure that both registers are of the }
{ same size. }
{ if reg,ref or ref,reg we check if the symbol name is }
{ assigned, if so a size must be specified and compared }
{ to the register size, both must be equal. If there is }
{ no symbol name, then we check : }
{ if refsize = NO_SIZE then OPCODE_SIZE = regsize }
{ else if refsize = regsize then OPCODE_SIZE = regsize}
{ else error. }
{ if no_error emit the opcode. }
{ if ref,const or const,ref if ref does not have any size }
{ then error, otherwise emit the opcode. }
{ - If this is a three operand opcode: }
{ imul,shld,and shrd -> check them manually. }
{*********************************************************************}
var
fits : boolean;
i: longint;
opsize: topsize;
optyp1, optyp2, optyp3: longint;
instruc: tasmop;
Begin
fits := FALSE;
for i:=1 to instr.numops do
Begin
case instr.operands[i].operandtype of
OPR_REGISTER: instr.operands[i].size :=
_regsizes[instr.operands[i].reg];
end; { end case }
end; { endif }
{ setup specific instructions for first pass }
instruc := instr.getinstruction;
if (instruc in [A_LEA,A_LDS,A_LSS,A_LES,A_LFS,A_LGS]) then
Begin
if instr.operands[1].size <> S_L then
Begin
Message(assem_e_16bit_base_in_32bit_segment);
exit;
end; { endif }
end;
With instr do
Begin
for i:=1 to numops do
Begin
With operands[i] do
Begin
{ check for 16-bit bases/indexes and emit an error. }
{ we cannot only emit a warning since gas does not }
{ accept 16-bit indexes and bases. }
if (operandtype = OPR_REFERENCE) and
((ref.base <> R_NO) or
(ref.index <> R_NO)) then
Begin
{ index or base defined. }
if (ref.base <> R_NO) then
Begin
if not (ref.base in
[R_EAX,R_EBX,R_ECX,R_EDX,R_EBP,R_ESI,R_EDI,R_ESP]) then
Message(assem_e_16bit_base_in_32bit_segment);
end;
{ index or base defined. }
if (ref.index <> R_NO) then
Begin
if not (ref.index in
[R_EAX,R_EBX,R_ECX,R_EDX,R_EBP,R_ESI,R_EDI,R_ESP]) then
Message(assem_e_16bit_index_in_32bit_segment);
end;
end;
{ Check for constants without bases/indexes in memory }
{ references. }
if (operandtype = OPR_REFERENCE) and
(ref.base = R_NO) and
(ref.index = R_NO) and
(ref.symbol = nil) and
(ref.offset <> 0) then
Begin
ref.isintvalue := TRUE;
Message(assem_e_const_ref_not_allowed);
end;
opinfo := findtype(operands[i]);
end; { end with }
end; {endfor}
{ TAKE CARE OF SPECIAL OPCODES, TAKE CARE OF THEM INDIVUALLY. }
{ ALL THE REST ARE TAKEN CARE BY OPCODE TABLE AND THIRD PASS. }
if instruc = A_FST then
Begin
end
else
if instruc = A_FILD then
Begin
end
else
if instruc = A_FLD then
Begin
{A_FLDS,A_FLDL,A_FLDT}
end
else
if instruc = A_FIST then
Begin
{A_FISTQ,A_FISTS,A_FISTL}
end
else
if instruc = A_FWAIT then
FWaitWarning
else
if instruc = A_MOVSX then
Begin
{ change the instruction to conform to GAS }
if operands[1].size = S_W then
Begin
addinstr(A_MOVSBW)
end
else
if operands[1].size = S_L then
Begin
if operands[2].size = S_B then
addinstr(A_MOVSBL)
else
addinstr(A_MOVSWL);
end;
instruc := getinstruction; { reload instruction }
end
else
if instruc = A_MOVZX then
Begin
{ change the instruction to conform to GAS }
if operands[1].size = S_W then
Begin
addinstr(A_MOVZB)
end
else
if operands[1].size = S_L then
Begin
if operands[2].size = S_B then
addinstr(A_MOVZB)
else
addinstr(A_MOVZWL);
end;
instruc := getinstruction; { reload instruction }
end
else
if (instruc in [A_BT,A_BTC,A_BTR,A_BTS]) then
Begin
if numops = 2 then
Begin
if (operands[2].operandtype = OPR_CONSTANT)
and (operands[2].val <= $ff) then
Begin
operands[2].opinfo := ao_imm8;
{ no operand size if using constant. }
operands[2].size := S_NO;
fits := TRUE;
end
end
else
Begin
Message(assem_e_invalid_opcode_and_operand);
exit;
end;
end
else
if instruc = A_ENTER then
Begin
if numops =2 then
Begin
if (operands[1].operandtype = OPR_CONSTANT) and
(operands[1].val <= $ffff) then
Begin
operands[1].opinfo := ao_imm16;
end { endif }
end { endif }
else
Begin
Message(assem_e_invalid_opcode_and_operand);
exit;
end
end { endif }
else
{ Handle special opcodes for the opcode }
{ table. Set them up correctly. }
if (instruc in [A_IN,A_INS]) then
Begin
if numops =2 then
Begin
if (operands[2].operandtype = OPR_REGISTER) and (operands[2].reg = R_DX)
then
Begin
operands[2].opinfo := ao_inoutportreg;
if (operands[1].operandtype = OPR_REGISTER) and
(operands[1].reg in [R_EAX,R_AX,R_AL]) and
(instruc = A_IN) then
Begin
operands[1].opinfo := ao_acc;
end
end
else
if (operands[2].operandtype = OPR_CONSTANT) and (operands[2].val <= $ff)
and (instruc = A_IN) then
Begin
operands[2].opinfo := ao_imm8;
operands[2].size := S_B;
if (operands[1].operandtype = OPR_REGISTER) and
(operands[1].reg in [R_EAX,R_AX,R_AL]) and
(instruc = A_IN) then
Begin
operands[1].opinfo := ao_acc;
end
end;
end
else
if not ((numops=0) and (instruc=A_INS)) then
Begin
Message(assem_e_invalid_opcode_and_operand);
exit;
end;
end
else
if (instruc in [A_OUT,A_OUTS]) then
Begin
if numops =2 then
Begin
if (operands[1].operandtype = OPR_REGISTER) and (operands[1].reg = R_DX)
then
Begin
operands[1].opinfo := ao_inoutportreg;
if (operands[2].operandtype = OPR_REGISTER) and
(operands[2].reg in [R_EAX,R_AX,R_AL]) and
(instruc = A_OUT) then
Begin
operands[2].opinfo := ao_acc;
fits := TRUE;
end
end
else
if (operands[1].operandtype = OPR_CONSTANT) and (operands[1].val <= $ff)
and (instruc = A_OUT) then
Begin
operands[1].opinfo := ao_imm8;
operands[1].size := S_B;
if (operands[2].operandtype = OPR_REGISTER) and
(operands[2].reg in [R_EAX,R_AX,R_AL]) and
(instruc = A_OUT) then
Begin
operands[2].opinfo := ao_acc;
fits := TRUE;
end
end;
end
else
if not ((numops=0) and (instruc=A_OUTS)) then
Begin
Message(assem_e_invalid_opcode_and_operand);
exit;
end;
end
else
if instruc in [A_RCL,A_RCR,A_ROL,A_ROR,A_SAL,A_SAR,A_SHL,A_SHR] then
{ if RCL,ROL,... }
Begin
if numops =2 then
Begin
if (operands[2].operandtype = OPR_REGISTER) and (operands[2].reg = R_CL)
then
Begin
operands[2].opinfo := ao_shiftcount
end
else
if (operands[2].operandtype = OPR_CONSTANT) and
(operands[2].val <= $ff) then
Begin
operands[2].opinfo := ao_imm8;
operands[2].size := S_B;
end;
end
else { if numops = 2 }
Begin
Message(assem_e_invalid_opcode_and_operand);
exit;
end;
end
{ endif ROL,RCL ... }
else
if instruc in [A_DIV, A_IDIV] then
Begin
if (operands[1].operandtype = OPR_REGISTER) and
(operands[1].reg in [R_AL,R_AX,R_EAX]) then
operands[1].opinfo := ao_acc;
end
else
if (instruc = A_FNSTSW) or (instruc = A_FSTSW) then
Begin
if numops = 1 then
Begin
if (operands[1].operandtype = OPR_REGISTER) and
(operands[1].reg = R_AX) then
operands[1].opinfo := ao_acc;
end
else
Begin
Message(assem_e_invalid_opcode_and_operand);
exit;
end;
end
else
if (instruc = A_SHLD) or (instruc = A_SHRD) then
{ these instruction are fully parsed individually on pass three }
{ so we just do a summary checking here. }
Begin
if numops = 3 then
Begin
if (operands[3].operandtype = OPR_CONSTANT)
and (operands[3].val <= $ff) then
Begin
operands[3].opinfo := ao_imm8;
operands[3].size := S_B;
end;
end
else
Begin
Message(assem_e_invalid_opcode_and_operand);
exit;
end;
end
else
if instruc = A_INT then
Begin
if numops = 1 then
Begin
if (operands[1].operandtype = OPR_CONSTANT) and
(operands[1].val <= $ff) then
operands[1].opinfo := ao_imm8;
end
end
else
if instruc = A_RET then
Begin
if numops =1 then
Begin
if (operands[1].operandtype = OPR_CONSTANT) and
(operands[1].val <= $ffff) then
operands[1].opinfo := ao_imm16;
end
end; { endif }
{ all string instructions have default memory }
{ location which are ignored. Take care of }
{ those. }
{ Here could be added the code for segment }
{ overrides. }
if instruc in [A_SCAS,A_CMPS,A_STOS,A_LODS] then
Begin
if numops =1 then
Begin
if (operands[1].operandtype = OPR_REFERENCE) and
(assigned(operands[1].ref.symbol)) then
Freemem(operands[1].ref.symbol,length(operands[1].ref.symbol^)+1);
operands[1].operandtype := OPR_NONE;
numops := 0;
end;
end; { endif }
if instruc in [A_INS,A_MOVS,A_OUTS] then
Begin
if numops =2 then
Begin
if (operands[1].operandtype = OPR_REFERENCE) and
(assigned(operands[1].ref.symbol)) then
Freemem(operands[1].ref.symbol,length(operands[1].ref.symbol^)+1);
if (operands[2].operandtype = OPR_REFERENCE) and
(assigned(operands[2].ref.symbol)) then
Freemem(operands[2].ref.symbol,length(operands[1].ref.symbol^)+1);
operands[1].operandtype := OPR_NONE;
operands[2].operandtype := OPR_NONE;
numops := 0;
end;
end;
{ handle parameter for segment overrides }
if instruc = A_XLAT then
Begin
{ handle special TP syntax case for XLAT }
{ here we accept XLAT, XLATB and XLAT m8 }
if (numops = 1) or (numops = 0) then
Begin
if (operands[1].operandtype = OPR_REFERENCE) and
(assigned(operands[1].ref.symbol)) then
Freemem(operands[1].ref.symbol,length(operands[1].ref.symbol^)+1);
operands[1].operandtype := OPR_NONE;
numops := 0;
{ always a byte for XLAT }
instr.stropsize := S_B;
end;
end;
{ swap the destination and source }
{ to put in AT&T style direction }
{ only if there are 2/3 operand }
{ numbers. }
if (instruc <> A_ENTER) then
SwapOperands(instr);
{ copy them to local variables }
{ for faster access }
optyp1:=operands[1].opinfo;
optyp2:=operands[2].opinfo;
optyp3:=operands[3].opinfo;
end; { end with }
{ after reading the operands }
{ search the instruction }
{ setup startvalue from cache }
if ins_cache[instruc]<>-1 then
i:=ins_cache[instruc]
else i:=0;
{ this makes cpu.pp uncompilable, but i think this code should be }
{ inserted in the system unit anyways. }
if (instruc >= lastop_in_table) and
((cs_compilesystem in aktswitches) or (opt_processors > globals.i386)) then
begin
Message(assem_w_opcode_not_in_table);
fits:=true;
end
else while not(fits) do
begin
{ set the instruction cache, if the instruction }
{ occurs the first time }
if (it[i].i=instruc) and (ins_cache[instruc]=-1) then
ins_cache[instruc]:=i;
if (it[i].i=instruc) and (instr.numops=it[i].ops) then
begin
{ first fit }
case instr.numops of
0 : begin
fits:=true;
break;
end;
1 :
Begin
if (optyp1 and it[i].o1)<>0 then
Begin
fits:=true;
break;
end;
{ I consider sign-extended 8bit value to }
{ be equal to immediate 8bit therefore }
{ convert... }
if (optyp1 = ao_imm8) then
Begin
{ check if this is a simple sign extend. }
if (it[i].o1<>ao_imm8s) then
Begin
fits:=true;
break;
end;
end;
end;
2 : if ((optyp1 and it[i].o1)<>0) and
((optyp2 and it[i].o2)<>0) then
Begin
fits:=true;
break;
end
{ if the operands can be swaped }
{ then swap them }
else if ((it[i].m and af_d)<>0) and
((optyp1 and it[i].o2)<>0) and
((optyp2 and it[i].o1)<>0) then
begin
{ swap the destination and source }
{ to put in AT&T style direction }
{ What does this mean !!!! ???????????????????????? }
{ if (output_format in [of_o,of_att]) then }
{ ???????????? }
{ SwapOperands(instr); }
fits:=true;
break;
end;
3 : if ((optyp1 and it[i].o1)<>0) and
((optyp2 and it[i].o2)<>0) and
((optyp3 and it[i].o3)<>0) then
Begin
fits:=true;
break;
end;
end; { end case }
end; { endif }
if it[i].i=A_NONE then
begin
{ NO MATCH! }
Message(assem_e_invalid_opcode_and_operand);
exit;
end;
inc(i);
end; { end while }
{ We add the opcode to the opcode linked list }
if fits then
Begin
if instr.getprefix <> A_NONE then
Begin
p^.concat(new(pai386,op_none(instr.getprefix,S_NO)));
end;
case instr.numops of
0:
if instr.stropsize <> S_NO then
{ is this a string operation opcode or xlat then check }
{ the size of the operation. }
p^.concat(new(pai386,op_none(instruc,instr.stropsize)))
else
p^.concat(new(pai386,op_none(instruc,S_NO)));
1: Begin
case instr.operands[1].operandtype of
{ all one operand opcodes with constant have no defined sizes }
{ at least that is what it seems in the tasm 2.0 manual. }
OPR_CONSTANT: p^.concat(new(pai386,op_const(instruc,
S_NO, instr.operands[1].val)));
{ the size of the operand can be determined by the as,nasm and }
{ tasm. }
{ Even though normally gas should not be trusted, v2.8.1 }
{ has been *extensively* tested to assure that the output }
{ is indeed correct with the following opcodes: push and pop }
OPR_REGISTER: if instruc in [A_INC,A_DEC, A_NEG,A_NOT] then
Begin
p^.concat(new(pai386,op_reg(instruc,
instr.operands[1].size,instr.operands[1].reg)));
end
else
p^.concat(new(pai386,op_reg(instruc,
S_NO,instr.operands[1].reg)));
{ this is where it gets a bit more complicated... }
OPR_REFERENCE:
if instr.operands[1].size <> S_NO then
Begin
p^.concat(new(pai386,op_ref(instruc,
instr.operands[1].size,newreference(instr.operands[1].ref))));
end
else
Begin
{ special jmp and call case with }
{ symbolic references. }
if instruc in [A_CALL,A_JMP] then
Begin
p^.concat(new(pai386,op_ref(instruc,
S_NO,newreference(instr.operands[1].ref))));
end
else
Message(assem_e_invalid_opcode_and_operand);
end;
OPR_NONE: Begin
Message(assem_f_internal_error_in_concatopcode);
end;
else
Begin
Message(assem_f_internal_error_in_concatopcode);
end;
end;
end;
2:
Begin
if instruc in [A_MOVSX,A_MOVZX,A_MOVSB,A_MOVSBL,A_MOVSBW,
A_MOVSWL,A_MOVZB,A_MOVZWL] then
{ movzx and movsx }
HandleExtend(instr)
else
{ other instructions }
Begin
With instr do
Begin
{ source }
opsize := operands[1].size;
case operands[1].operandtype of
{ reg,reg }
{ reg,ref }
OPR_REGISTER:
Begin
case operands[2].operandtype of
OPR_REGISTER:
{ see info in ratti386.pas, about the problem }
{ which can cause gas here. }
if (opsize = operands[2].size) then
begin
p^.concat(new(pai386,op_reg_reg(instruc,
opsize,operands[1].reg,operands[2].reg)));
end
else
{ these do not require any size specification. }
if (instruc in [A_IN,A_OUT,A_SAL,A_SAR,A_SHL,A_SHR,A_ROL,
A_ROR,A_RCR,A_RCL]) then
{ outs and ins are already taken care by }
{ the first pass. }
p^.concat(new(pai386,op_reg_reg(instruc,
S_NO,operands[1].reg,operands[2].reg)))
else
Begin
Message(assem_e_invalid_opcode_and_operand);
end;
OPR_REFERENCE:
{ variable name. }
{ here we must check the instruction type }
{ before deciding if to use and compare }
{ any sizes. }
if assigned(operands[2].ref.symbol) then
Begin
if (opsize = operands[2].size) or (instruc in
[A_RCL,A_RCR,A_ROL,A_ROR,A_SAL,A_SAR,A_SHR,A_SHL]) then
p^.concat(new(pai386,op_reg_ref(instruc,
opsize,operands[1].reg,newreference(operands[2].ref))))
else
Message(assem_e_invalid_size_in_ref);
end
else
Begin
{ register reference }
{ possiblities:1) local variable which }
{ has been replaced by bp and offset }
{ in this case size should be valid }
{ 2) Indirect register }
{ adressing, 1st operand determines }
{ size. }
if (opsize = operands[2].size) or (operands[2].size = S_NO) then
p^.concat(new(pai386,op_reg_ref(instruc,
opsize,operands[1].reg,newreference(operands[2].ref))))
else
Message(assem_e_invalid_size_in_ref);
end;
OPR_CONSTANT: { const,reg }
Begin { OUT const,reg }
if (instruc = A_OUT) and (opsize = S_B) then
p^.concat(new(pai386,op_reg_const(instruc,
opsize,operands[1].reg,operands[2].val)))
else
Message(assem_e_invalid_size_in_ref);
end;
else { else case }
Begin
Message(assem_f_internal_error_in_concatopcode);
end;
end; { end inner case }
end;
{ const,reg }
{ const,const }
{ const,ref }
OPR_CONSTANT:
case instr.operands[2].operandtype of
{ constant, constant does not have a specific size. }
OPR_CONSTANT:
p^.concat(new(pai386,op_const_const(instruc,
S_NO,operands[1].val,operands[2].val)));
OPR_REFERENCE:
Begin
if (operands[1].val <= $ff) and
(operands[2].size in [S_B,S_W,S_L,S_Q,S_S]) then
p^.concat(new(pai386,op_const_ref(instruc,
operands[2].size,operands[1].val,
newreference(operands[2].ref))))
else
if (operands[1].val <= $ffff) and
(operands[2].size in [S_W,S_L,S_Q,S_S]) then
p^.concat(new(pai386,op_const_ref(instruc,
operands[2].size,operands[1].val,
newreference(operands[2].ref))))
else
if (operands[1].val <= $7fffffff) and
(operands[2].size in [S_L,S_Q,S_S]) then
p^.concat(new(pai386,op_const_ref(instruc,
operands[2].size,operands[1].val,
newreference(operands[2].ref))))
else
Message(assem_e_invalid_size_in_ref);
end;
OPR_REGISTER:
Begin
{ size of opcode determined by register }
if (operands[1].val <= $ff) and
(operands[2].size in [S_B,S_W,S_L,S_Q,S_S]) then
p^.concat(new(pai386,op_const_reg(instruc,
operands[2].size,operands[1].val,
operands[2].reg)))
else
if (operands[1].val <= $ffff) and
(operands[2].size in [S_W,S_L,S_Q,S_S]) then
p^.concat(new(pai386,op_const_reg(instruc,
operands[2].size,operands[1].val,
operands[2].reg)))
else
if (operands[1].val <= $7fffffff) and
(operands[2].size in [S_L,S_Q,S_S]) then
p^.concat(new(pai386,op_const_reg(instruc,
operands[2].size,operands[1].val,
operands[2].reg)))
else
Message(assem_e_invalid_opcode_size);
end;
else
Begin
Message(assem_f_internal_error_in_concatopcode);
end;
end; { end case }
{ ref,reg }
{ ref,ref }
OPR_REFERENCE:
case instr.operands[2].operandtype of
OPR_REGISTER:
if assigned(operands[1].ref.symbol) then
{ global variable }
Begin
if instruc in [A_LEA,A_LDS,A_LES,A_LFS,A_LGS,A_LSS]
then
p^.concat(new(pai386,op_ref_reg(instruc,
S_NO,newreference(operands[1].ref),
operands[2].reg)))
else
if (opsize = operands[2].size) then
p^.concat(new(pai386,op_ref_reg(instruc,
opsize,newreference(operands[1].ref),
operands[2].reg)))
else
Begin
Message(assem_e_invalid_opcode_and_operand);
end;
end
else
Begin
{ register reference }
{ possiblities:1) local variable which }
{ has been replaced by bp and offset }
{ in this case size should be valid }
{ 2) Indirect register }
{ adressing, 2nd operand determines }
{ size. }
if (opsize = operands[2].size) or (opsize = S_NO) then
Begin
p^.concat(new(pai386,op_ref_reg(instruc,
operands[2].size,newreference(operands[1].ref),
operands[2].reg)));
end
else
Message(assem_e_invalid_size_in_ref);
end;
OPR_REFERENCE: { special opcodes }
p^.concat(new(pai386,op_ref_ref(instruc,
opsize,newreference(operands[1].ref),
newreference(operands[2].ref))));
else
Begin
Message(assem_f_internal_error_in_concatopcode);
end;
end; { end inner case }
end; { end case }
end; { end with }
end; {end if movsx... }
end;
3: Begin
{ only imul, shld and shrd }
{ middle must be a register }
if (instruc in [A_SHLD,A_SHRD]) and (instr.operands[2].operandtype =
OPR_REGISTER) then
Begin
case instr.operands[2].size of
S_W: if instr.operands[1].operandtype = OPR_CONSTANT then
Begin
if instr.operands[1].val <= $ff then
Begin
if instr.operands[3].size in [S_W] then
Begin
case instr.operands[3].operandtype of
OPR_REFERENCE: { MISSING !!!! } ;
OPR_REGISTER: p^.concat(new(pai386,
op_const_reg_reg(instruc, S_W,
instr.operands[1].val, instr.operands[2].reg,
instr.operands[3].reg)));
else
Message(assem_e_invalid_opcode_and_operand);
Message(assem_e_invalid_opcode_and_operand);
end;
end
else
Message(assem_e_invalid_opcode_and_operand);
end;
end
else
Message(assem_e_invalid_opcode_and_operand);
S_L: if instr.operands[1].operandtype = OPR_CONSTANT then
Begin
if instr.operands[1].val <= $ff then
Begin
if instr.operands[3].size in [S_L] then
Begin
case instr.operands[3].operandtype of
OPR_REFERENCE: { MISSING !!!! } ;
OPR_REGISTER: p^.concat(new(pai386,
op_const_reg_reg(instruc, S_L,
instr.operands[1].val, instr.operands[2].reg,
instr.operands[3].reg)));
else
Message(assem_e_invalid_opcode_and_operand);
end;
end
else
Message(assem_e_invalid_opcode_and_operand);
end;
end
else
Message(assem_e_invalid_opcode_and_operand);
else
Message(assem_e_invalid_opcode_and_operand);
end; { end case }
end
else
if (instruc in [A_IMUL]) and (instr.operands[3].operandtype
= OPR_REGISTER) then
Begin
case instr.operands[3].size of
S_W: if instr.operands[1].operandtype = OPR_CONSTANT then
Begin
if instr.operands[1].val <= $ffff then
Begin
if instr.operands[2].size in [S_W] then
Begin
case instr.operands[2].operandtype of
OPR_REFERENCE: { MISSING !!!! } ;
OPR_REGISTER: p^.concat(new(pai386,
op_const_reg_reg(instruc, S_W,
instr.operands[1].val, instr.operands[2].reg,
instr.operands[3].reg)));
else
Message(assem_e_invalid_opcode_and_operand);
end; { end case }
end
else
Message(assem_e_invalid_opcode_and_operand);
end;
end
else
Message(assem_e_invalid_opcode_and_operand);
S_L: if instr.operands[1].operandtype = OPR_CONSTANT then
Begin
if instr.operands[1].val <= $7fffffff then
Begin
if instr.operands[2].size in [S_L] then
Begin
case instr.operands[2].operandtype of
OPR_REFERENCE: { MISSING !!!! } ;
OPR_REGISTER: p^.concat(new(pai386,
op_const_reg_reg(instruc, S_L,
instr.operands[1].val, instr.operands[2].reg,
instr.operands[3].reg)));
else
Message(assem_e_invalid_opcode_and_operand);
end; { end case }
end
else
Message(assem_e_invalid_opcode_and_operand);
end;
end
else
Message(assem_e_invalid_opcode_and_operand);
else
Message(assem_e_invalid_middle_sized_operand);
end; { end case }
end { endif }
else
Message(assem_e_invalid_three_operand_opcode);
end;
end; { end case }
end;
end;
{---------------------------------------------------------------------}
{ Routines for the parsing }
{---------------------------------------------------------------------}
procedure consume(t : tinteltoken);
begin
if t<>actasmtoken then
Message(assem_e_syntax_error);
actasmtoken:=gettoken;
{ if the token must be ignored, then }
{ get another token to parse. }
if actasmtoken = AS_NONE then
actasmtoken := gettoken;
end;
function findregister(const s : string): tregister;
{*********************************************************************}
{ FUNCTION findregister(s: string):tasmop; }
{ Description: Determines if the s string is a valid register, }
{ if so returns correct tregister token, or R_NO if not found. }
{*********************************************************************}
var
i: tregister;
begin
findregister := R_NO;
for i:=firstreg to lastreg do
if s = iasmregs[i] then
Begin
findregister := i;
exit;
end;
end;
function findoverride(const s: string; var reg:tregister): boolean;
var
i: byte;
begin
findoverride := FALSE;
reg := R_NO;
for i:=0 to _count_asmoverrides do
Begin
if s = _asmoverrides[i] then
begin
reg := _overridetokens[i];
findoverride := TRUE;
exit;
end;
end;
end;
function findprefix(const s: string; var token: tasmop): boolean;
var i: byte;
Begin
findprefix := FALSE;
for i:=0 to _count_asmprefixes do
Begin
if s = _asmprefixes[i] then
begin
token := _prefixtokens[i];
findprefix := TRUE;
exit;
end;
end;
end;
function findsegment(const s:string): tregister;
{*********************************************************************}
{ FUNCTION findsegment(s: string):tasmop; }
{ Description: Determines if the s string is a valid segment register}
{ if so returns correct tregister token, or R_NO if not found. }
{*********************************************************************}
var
i: tregister;
Begin
findsegment := R_DEFAULT_SEG;
for i:=firstsreg to lastsreg do
if s = iasmregs[i] then
Begin
findsegment := i;
exit;
end;
end;
function findopcode(const s: string): tasmop;
{*********************************************************************}
{ FUNCTION findopcode(s: string): tasmop; }
{ Description: Determines if the s string is a valid opcode }
{ if so returns correct tasmop token. }
{*********************************************************************}
var
i: tasmop;
j: byte;
Begin
findopcode := A_NONE;
for i:=firstop to lastop do
if s = iasmops^[i] then
begin
findopcode:=i;
exit;
end;
{ not found yet, search for extended opcodes }
{ now, in this case, we must use the suffix }
{ to determine the size of the instruction }
for j:=0 to _count_asmspecialops do
Begin
if s = _specialops[j] then
Begin
findopcode := _specialopstokens[j];
{ set the size }
case s[length(s)] of
'B': instr.stropsize := S_B;
'D': instr.stropsize := S_L;
'W': instr.stropsize := S_W;
end;
exit;
end;
end;
end;
Function CheckPrefix(prefix: tasmop; opcode:tasmop): Boolean;
{ Checks if the prefix is valid with the following instruction }
{ return false if not, otherwise true }
Begin
CheckPrefix := TRUE;
Case prefix of
A_REP,A_REPNE,A_REPE: if not (opcode in [A_SCAS,A_INS,A_OUTS,A_MOVS,
A_CMPS,A_LODS,A_STOS]) then
Begin
CheckPrefix := FALSE;
exit;
end;
A_LOCK: if not (opcode in [A_BT,A_BTS,A_BTR,A_BTC,A_XCHG,A_ADD,A_OR,
A_ADC,A_SBB,A_AND,A_SUB,A_XOR,A_NOT,A_NEG,A_INC,A_DEC]) then
Begin
CheckPrefix := FALSE;
Exit;
end;
A_NONE: exit; { no prefix here }
else
CheckPrefix := FALSE;
end; { end case }
end;
Procedure InitAsmRef(var instr: TInstruction);
{*********************************************************************}
{ Description: This routine first check if the instruction is of }
{ type OPR_NONE, or OPR_REFERENCE , if not it gives out an error. }
{ If the operandtype = OPR_NONE or <> OPR_REFERENCE then it sets up }
{ the operand type to OPR_REFERENCE, as well as setting up the ref }
{ to point to the default segment. }
{*********************************************************************}
Begin
With instr do
Begin
case operands[operandnum].operandtype of
OPR_REFERENCE: exit;
OPR_NONE: ;
else
Message(assem_e_invalid_operand_type);
end;
operands[operandnum].operandtype := OPR_REFERENCE;
operands[operandnum].ref.segment := R_DEFAULT_SEG;
end;
end;
Function CheckOverride(segreg: tregister; var instr: TInstruction): Boolean;
{ Check if the override is valid, and if so then }
{ update the instr variable accordingly. }
Begin
CheckOverride := FALSE;
if instr.getinstruction in [A_MOVS,A_XLAT,A_CMPS] then
Begin
CheckOverride := TRUE;
Message(assem_e_segment_override_not_supported);
end
end;
Function CalculateExpression(expression: string): longint;
var
expr: TExprParse;
Begin
expr.Init;
CalculateExpression := expr.Evaluate(expression);
expr.Done;
end;
Function BuildRefExpression: longint;
{*********************************************************************}
{ FUNCTION BuildExpression: longint }
{ Description: This routine calculates a constant expression to }
{ a given value. The return value is the value calculated from }
{ the expression. }
{ The following tokens (not strings) are recognized: }
{ (,),SHL,SHR,/,*,NOT,OR,XOR,AND,MOD,+/-,numbers,ID to constants. }
{*********************************************************************}
{ ENTRY: On entry the token should be any valid expression token. }
{ EXIT: On Exit the token points to any token after the closing }
{ RBRACKET }
{ ERROR RECOVERY: Tries to find COMMA or SEPARATOR token by consuming }
{ invalid tokens. }
{*********************************************************************}
var tempstr: string;
expr: string;
l : longint;
errorflag : boolean;
Begin
errorflag := FALSE;
tempstr := '';
expr := '';
{ tell tokenizer that we are in }
{ an expression. }
inexpression := TRUE;
Repeat
Case actasmtoken of
AS_LPAREN: Begin
Consume(AS_LPAREN);
expr := expr + '(';
end;
AS_RPAREN: Begin
Consume(AS_RPAREN);
expr := expr + ')';
end;
AS_SHL: Begin
Consume(AS_SHL);
expr := expr + '<';
end;
AS_SHR: Begin
Consume(AS_SHR);
expr := expr + '>';
end;
AS_SLASH: Begin
Consume(AS_SLASH);
expr := expr + '/';
end;
AS_MOD: Begin
Consume(AS_MOD);
expr := expr + '%';
end;
AS_STAR: Begin
Consume(AS_STAR);
expr := expr + '*';
end;
AS_PLUS: Begin
Consume(AS_PLUS);
expr := expr + '+';
end;
AS_MINUS: Begin
Consume(AS_MINUS);
expr := expr + '-';
end;
AS_AND: Begin
Consume(AS_AND);
expr := expr + '&';
end;
AS_NOT: Begin
Consume(AS_NOT);
expr := expr + '~';
end;
AS_XOR: Begin
Consume(AS_XOR);
expr := expr + '^';
end;
AS_OR: Begin
Consume(AS_OR);
expr := expr + '|';
end;
{ End of reference }
AS_RBRACKET: Begin
if not ErrorFlag then
BuildRefExpression := CalculateExpression(expr)
else
BuildRefExpression := 0;
Consume(AS_RBRACKET);
{ no longer in an expression }
inexpression := FALSE;
exit;
end;
AS_ID:
Begin
if NOT SearchIConstant(actasmpattern,l) then
Begin
Message1(assem_e_invalid_const_symbol,actasmpattern);
l := 0;
end;
str(l, tempstr);
expr := expr + tempstr;
Consume(AS_ID);
end;
AS_INTNUM: Begin
expr := expr + actasmpattern;
Consume(AS_INTNUM);
end;
AS_BINNUM: Begin
tempstr := BinaryToDec(actasmpattern);
if tempstr = '' then
Message(assem_f_error_converting_bin);
expr:=expr+tempstr;
Consume(AS_BINNUM);
end;
AS_HEXNUM: Begin
tempstr := HexToDec(actasmpattern);
if tempstr = '' then
Message(assem_f_error_converting_hex);
expr:=expr+tempstr;
Consume(AS_HEXNUM);
end;
AS_OCTALNUM: Begin
tempstr := OctalToDec(actasmpattern);
if tempstr = '' then
Message(assem_f_error_converting_octal);
expr:=expr+tempstr;
Consume(AS_OCTALNUM);
end;
else
Begin
{ write error only once. }
if not errorflag then
Message(assem_e_invalid_constant_expression);
BuildRefExpression := 0;
if actasmtoken in [AS_COMMA,AS_SEPARATOR] then exit;
{ consume tokens until we find COMMA or SEPARATOR }
Consume(actasmtoken);
errorflag := TRUE;
end;
end;
Until false;
end;
Procedure BuildRecordOffset(var instr: TInstruction; varname: string);
{*********************************************************************}
{ PROCEDURE BuildRecordOffset(var Instr: TInstruction) }
{ Description: This routine takes care of field specifiers of records }
{ and/or variables in asm operands. It updates the offset accordingly}
{*********************************************************************}
{ ENTRY: On entry the token should be DOT. }
{ name: should be the name of the variable to be expanded. '' if }
{ no variabled specified. }
{ EXIT: On Exit the token points to SEPARATOR or COMMA. }
{ ERROR RECOVERY: Tries to find COMMA or SEPARATOR token by consuming }
{ invalid tokens. }
{*********************************************************************}
var
firstpass: boolean;
offset: longint;
basetypename : string;
Begin
basetypename := '';
firstpass := TRUE;
{ // .ID[REG].ID ... // }
{ // .ID.ID... // }
Consume(AS_DOT);
Repeat
case actasmtoken of
AS_ID: Begin
InitAsmRef(instr);
{ // var_name.typefield.typefield // }
if (varname <> '') then
Begin
if not GetVarOffset(varname,actasmpattern,offset) then
Begin
Message1(assem_e_unknown_id,actasmpattern);
end
else
Inc(instr.operands[operandnum].ref.offset,Offset);
end
else
{ [ref].var_name.typefield.typefield ... }
{ [ref].var_name[reg] }
if not assigned(instr.operands[operandnum].ref.symbol) and
firstpass then
Begin
if not CreateVarInstr(instr,actasmpattern,operandnum) then
Begin
{ type field ? }
basetypename := actasmpattern;
end
else
varname := actasmpattern;
end
else
if firstpass then
{ [ref].typefield.typefield ... }
{ where the first typefield must specifiy the base }
{ object or record type. }
Begin
basetypename := actasmpattern;
end
else
{ [ref].typefield.typefield ... }
{ basetpyename is already set up... now look for fields. }
Begin
if not GetTypeOffset(basetypename,actasmpattern,Offset) then
Begin
Message1(assem_e_unknown_id,actasmpattern);
end
else
Inc(instr.operands[operandnum].ref.offset,Offset);
end;
Consume(AS_ID);
{ Take care of index register on this variable }
if actasmtoken = AS_LBRACKET then
Begin
Consume(AS_LBRACKET);
Case actasmtoken of
AS_REGISTER: Begin
if instr.operands[operandnum].ref.index <> R_NO then
Message(assem_e_defining_index_more_than_once);
instr.operands[operandnum].ref.index :=
findregister(actasmpattern);
Consume(AS_REGISTER);
end;
else
Begin
{ add offsets , assuming these are constant expressions... }
Inc(instr.operands[operandnum].ref.offset,BuildRefExpression);
end;
end;
Consume(AS_RBRACKET);
end;
{ Here we should either have AS_DOT, AS_SEPARATOR or AS_COMMA }
if actasmtoken = AS_DOT then
Consume(AS_DOT);
firstpass := FALSE;
Offset := 0;
end;
AS_SEPARATOR: exit;
AS_COMMA: exit;
else
Begin
Message(assem_e_invalid_field_specifier);
Consume(actasmtoken);
firstpass := FALSE;
end;
end; { end case }
Until (actasmtoken = AS_SEPARATOR) or (actasmtoken = AS_COMMA);
end;
Function BuildExpression: longint;
{*********************************************************************}
{ FUNCTION BuildExpression: longint }
{ Description: This routine calculates a constant expression to }
{ a given value. The return value is the value calculated from }
{ the expression. }
{ The following tokens (not strings) are recognized: }
{ (,),SHL,SHR,/,*,NOT,OR,XOR,AND,MOD,+/-,numbers,ID to constants. }
{*********************************************************************}
{ ENTRY: On entry the token should be any valid expression token. }
{ EXIT: On Exit the token points to either COMMA or SEPARATOR }
{ ERROR RECOVERY: Tries to find COMMA or SEPARATOR token by consuming }
{ invalid tokens. }
{*********************************************************************}
var expr: string;
tempstr: string;
l : longint;
errorflag: boolean;
Begin
errorflag := FALSE;
expr := '';
tempstr := '';
{ tell tokenizer that we are in an expression. }
inexpression := TRUE;
Repeat
Case actasmtoken of
AS_LPAREN: Begin
Consume(AS_LPAREN);
expr := expr + '(';
end;
AS_RPAREN: Begin
Consume(AS_RPAREN);
expr := expr + ')';
end;
AS_SHL: Begin
Consume(AS_SHL);
expr := expr + '<';
end;
AS_SHR: Begin
Consume(AS_SHR);
expr := expr + '>';
end;
AS_SLASH: Begin
Consume(AS_SLASH);
expr := expr + '/';
end;
AS_MOD: Begin
Consume(AS_MOD);
expr := expr + '%';
end;
AS_STAR: Begin
Consume(AS_STAR);
expr := expr + '*';
end;
AS_PLUS: Begin
Consume(AS_PLUS);
expr := expr + '+';
end;
AS_MINUS: Begin
Consume(AS_MINUS);
expr := expr + '-';
end;
AS_AND: Begin
Consume(AS_AND);
expr := expr + '&';
end;
AS_NOT: Begin
Consume(AS_NOT);
expr := expr + '~';
end;
AS_XOR: Begin
Consume(AS_XOR);
expr := expr + '^';
end;
AS_OR: Begin
Consume(AS_OR);
expr := expr + '|';
end;
AS_ID: Begin
if NOT SearchIConstant(actasmpattern,l) then
Begin
Message1(assem_e_invalid_const_symbol,actasmpattern);
l := 0;
end;
str(l, tempstr);
expr := expr + tempstr;
Consume(AS_ID);
end;
AS_INTNUM: Begin
expr := expr + actasmpattern;
Consume(AS_INTNUM);
end;
AS_BINNUM: Begin
tempstr := BinaryToDec(actasmpattern);
if tempstr = '' then
Message(assem_f_error_converting_bin);
expr:=expr+tempstr;
Consume(AS_BINNUM);
end;
AS_HEXNUM: Begin
tempstr := HexToDec(actasmpattern);
if tempstr = '' then
Message(assem_f_error_converting_hex);
expr:=expr+tempstr;
Consume(AS_HEXNUM);
end;
AS_OCTALNUM: Begin
tempstr := OctalToDec(actasmpattern);
if tempstr = '' then
Message(assem_f_error_converting_octal);
expr:=expr+tempstr;
Consume(AS_OCTALNUM);
end;
{ go to next term }
AS_COMMA: Begin
if not ErrorFlag then
BuildExpression := CalculateExpression(expr)
else
BuildExpression := 0;
inexpression := FALSE;
Exit;
end;
{ go to next symbol }
AS_SEPARATOR: Begin
if not ErrorFlag then
BuildExpression := CalculateExpression(expr)
else
BuildExpression := 0;
inexpression := FALSE;
Exit;
end;
else
Begin
{ only write error once. }
if not errorflag then
Message(assem_e_invalid_constant_expression);
{ consume tokens until we find COMMA or SEPARATOR }
Consume(actasmtoken);
errorflag := TRUE;
End;
end;
Until false;
end;
Procedure BuildScaling(Var instr: TInstruction);
{*********************************************************************}
{ Takes care of parsing expression starting from the scaling value }
{ up to and including possible field specifiers. }
{ EXIT CONDITION: On exit the routine should point to AS_SEPARATOR }
{ or AS_COMMA. On entry should point to AS_STAR token. }
{*********************************************************************}
var str:string;
l: longint;
code: integer;
Begin
Consume(AS_STAR);
if (instr.operands[operandnum].ref.scalefactor <> 0)
and (instr.operands[operandnum].ref.scalefactor <> 1) then
Begin
Message(assem_f_internal_error_in_buildscale);
end;
case actasmtoken of
AS_INTNUM: str := actasmpattern;
AS_HEXNUM: str := HexToDec(actasmpattern);
AS_BINNUM: str := BinaryToDec(actasmpattern);
AS_OCTALNUM: str := OctalToDec(actasmpattern);
else
Message(assem_e_syntax_error);
end;
val(str, l, code);
if code <> 0 then
Message(assem_e_invalid_scaling_factor);
if ((l = 2) or (l = 4) or (l = 8) or (l = 1)) and (code = 0) then
begin
instr.operands[operandnum].ref.scalefactor := l;
end
else
Begin
Message(assem_e_invalid_scaling_value);
instr.operands[operandnum].ref.scalefactor := 0;
end;
if instr.operands[operandnum].ref.index = R_NO then
Begin
Message(assem_e_scaling_value_only_allowed_with_index);
instr.operands[operandnum].ref.scalefactor := 0;
end;
{ Consume the scaling number }
Consume(actasmtoken);
case actasmtoken of
{ // [...*SCALING-expr] ... // }
AS_MINUS: Begin
if instr.operands[operandnum].ref.offset <> 0 then
Message(assem_f_internal_error_in_buildscale);
instr.operands[operandnum].ref.offset :=
BuildRefExpression;
end;
{ // [...*SCALING+expr] ... // }
AS_PLUS: Begin
if instr.operands[operandnum].ref.offset <> 0 then
Message(assem_f_internal_error_in_buildscale);
instr.operands[operandnum].ref.offset :=
BuildRefExpression;
end;
{ // [...*SCALING] ... // }
AS_RBRACKET: Consume(AS_RBRACKET);
else
Message(assem_e_invalid_scaling_value);
end;
{ // .Field.Field ... or separator/comma // }
Case actasmtoken of
AS_DOT: BuildRecordOffset(instr,'');
AS_COMMA, AS_SEPARATOR: ;
else
Message(assem_e_syntax_error);
end;
end;
Procedure BuildReference(var instr: TInstruction);
{*********************************************************************}
{ EXIT CONDITION: On exit the routine should point to either the }
{ AS_COMMA or AS_SEPARATOR token. }
{ On entry: contains the register after the opening bracket if any. }
{*********************************************************************}
var
reg:string;
segreg: boolean;
negative: boolean;
expr: string;
Begin
expr := '';
if instr.operands[operandnum].operandtype <> OPR_REFERENCE then
Begin
Message(assem_e_syn_no_ref_with_brackets);
InitAsmRef(instr);
consume(AS_REGISTER);
end
else
Begin
{ save the reg }
reg := actasmpattern;
{ is the syntax of the form: [REG:REG...] }
consume(AS_REGISTER);
if actasmtoken = AS_COLON then
begin
segreg := TRUE;
Message(assem_e_expression_form_not_supported);
if instr.operands[operandnum].ref.segment <> R_NO then
Message(assem_e_defining_seg_more_than_once);
instr.operands[operandnum].ref.segment := findsegment(reg);
{ Here we should process the syntax of the form }
{ [reg:reg...] }
{!!!!!!!!!!!!!!!!!!!!!!!! }
end
{ This is probably of the following syntax: }
{ SREG:[REG...] where SReg: is optional. }
{ Therefore we immediately say that reg }
{ is the base. }
else
Begin
if instr.operands[operandnum].ref.base <> R_NO then
Message(assem_e_defining_base_more_than_once);
instr.operands[operandnum].ref.base := findregister(reg);
end;
{ we process this type of syntax immediately... }
case actasmtoken of
{ // REG:[REG].Field.Field ... // }
{ // REG:[REG].Field[REG].Field... // }
AS_RBRACKET: Begin
Consume(AS_RBRACKET);
{ check for record fields }
if actasmtoken = AS_DOT then
BuildRecordOffset(instr,'');
if (actasmtoken = AS_SEPARATOR) or (actasmtoken = AS_COMMA) then
exit
else
Message(assem_e_syn_reference);
end;
{ // REG:[REG +/- ...].Field.Field ... // }
AS_PLUS,AS_MINUS: Begin
if actasmtoken = AS_MINUS then
Begin
expr := '-';
negative := TRUE
end
else
Begin
negative := FALSE;
expr := '+';
end;
Consume(actasmtoken);
{ // REG:[REG+REG+/-...].Field.Field // }
if actasmtoken = AS_REGISTER then
Begin
if negative then
Message(assem_e_negative_index_register);
if instr.operands[operandnum].ref.index <> R_NO then
Message(assem_e_defining_index_more_than_once);
instr.operands[operandnum].ref.index := findregister(actasmpattern);
Consume(AS_REGISTER);
case actasmtoken of
AS_RBRACKET: { // REG:[REG+REG].Field.Field... // }
Begin
Consume(AS_RBRACKET);
Case actasmtoken of
AS_DOT: BuildRecordOffset(instr,'');
AS_COMMA,AS_SEPARATOR: exit;
else
Message(assem_e_syntax_error);
end
end;
AS_PLUS,AS_MINUS: { // REG:[REG+REG+/-expr].Field.Field... // }
Begin
if instr.operands[operandnum].ref.offset <> 0 then
Message(assem_f_internal_error_in_buildreference);
instr.operands[operandnum].ref.offset :=
BuildRefExpression;
case actasmtoken of
AS_DOT: BuildRecordOffset(instr,'');
AS_COMMA,AS_SEPARATOR: ;
else
Message(assem_e_syntax_error);
end; { end case }
end;
AS_STAR: Begin { // REG:[REG+REG*SCALING...].Field.Field... // }
BuildScaling(instr);
end;
else
Begin
Message(assem_e_syntax_error);
end;
end; { end case }
end
else if actasmtoken = AS_STAR then
{ // REG:[REG*SCALING ... ] // }
Begin
BuildScaling(instr);
end
else
{ // REG:[REG+expr].Field.Field // }
Begin
if instr.operands[operandnum].ref.offset <> 0 then
Message(assem_f_internal_error_in_buildreference);
instr.operands[operandnum].ref.offset := BuildRefExpression;
case actasmtoken of
AS_DOT: BuildRecordOffset(instr,'');
AS_COMMA,AS_SEPARATOR: ;
else
Message(assem_e_syntax_error);
end; { end case }
end; { end if }
end; { end this case }
{ // REG:[REG*scaling] ... // }
AS_STAR: Begin
BuildScaling(instr);
end;
end;
end; { end outer if }
end;
Procedure BuildBracketExpression(var Instr: TInstruction; var_prefix: boolean);
{*********************************************************************}
{ PROCEDURE BuildBracketExpression }
{ Description: This routine builds up an expression after a LBRACKET }
{ token is encountered. }
{ On entry actasmtoken should be equal to AS_LBRACKET. }
{ var_prefix : Should be set to true if variable identifier has }
{ been defined, such as in ID[ }
{*********************************************************************}
{ EXIT CONDITION: On exit the routine should point to either the }
{ AS_COMMA or AS_SEPARATOR token. }
{*********************************************************************}
var
l:longint;
Begin
Consume(AS_LBRACKET);
initAsmRef(instr);
Case actasmtoken of
{ // Constant reference expression OR variable reference expression // }
AS_ID: Begin
if actasmpattern[1] = '@' then
Message(assem_e_local_symbol_not_allowed_as_ref);
if SearchIConstant(actasmpattern,l) then
Begin
{ if there was a variable prefix then }
{ add to offset }
If var_prefix then
Begin
Inc(instr.operands[operandnum].ref.offset, BuildRefExpression);
end
else
instr.operands[operandnum].ref.offset :=BuildRefExpression;
if not (actasmtoken in [AS_SEPARATOR,AS_COMMA]) then
Message(assem_e_invalid_operand_in_bracket_expression);
end
else if NOT var_prefix then
Begin
InitAsmRef(instr);
if not CreateVarInstr(instr,actasmpattern,operandnum) then
Message1(assem_e_unknown_id,actasmpattern);
Consume(AS_ID);
{ is there a constant expression following }
{ the variable name? }
if actasmtoken <> AS_RBRACKET then
Begin
Inc(instr.operands[operandnum].ref.offset, BuildRefExpression);
end
else
Consume(AS_RBRACKET);
end
else
Message1(assem_e_invalid_symbol_name,actasmpattern);
end;
{ Here we handle the special case in tp where }
{ the + operator is allowed with reg and var }
{ references, such as in mov al, byte ptr [+bx] }
AS_PLUS: Begin
Consume(AS_PLUS);
Case actasmtoken of
AS_REGISTER: Begin
BuildReference(instr);
end;
AS_ID: Begin
if actasmpattern[1] = '@' then
Message(assem_e_local_symbol_not_allowed_as_ref);
if SearchIConstant(actasmpattern,l) then
Begin
{ if there was a variable prefix then }
{ add to offset }
If var_prefix then
Begin
Inc(instr.operands[operandnum].ref.offset,
BuildRefExpression);
end
else
instr.operands[operandnum].ref.offset :=
BuildRefExpression;
if not (actasmtoken in [AS_SEPARATOR,AS_COMMA]) then
Message(assem_e_invalid_operand_in_bracket_expression);
end
else if NOT var_prefix then
Begin
InitAsmRef(instr);
if not CreateVarInstr(instr,actasmpattern,operandnum) then
Message1(assem_e_unknown_id,actasmpattern);
Consume(AS_ID);
{ is there a constant expression following }
{ the variable name? }
if actasmtoken <> AS_RBRACKET then
Begin
Inc(instr.operands[operandnum].ref.offset,
BuildRefExpression);
end
else
Consume(AS_RBRACKET);
end
else
Message1(assem_e_invalid_symbol_name,actasmpattern);
end;
{ // Constant reference expression // }
AS_INTNUM,AS_BINNUM,AS_OCTALNUM,
AS_HEXNUM: Begin
{ if there was a variable prefix then }
{ add to offset instead. }
If var_prefix then
Begin
Inc(instr.operands[operandnum].ref.offset, BuildRefExpression);
end
else
Begin
instr.operands[operandnum].ref.offset :=BuildRefExpression;
end;
if not (actasmtoken in [AS_SEPARATOR,AS_COMMA]) then
Message(assem_e_invalid_operand_in_bracket_expression);
end;
else
Message(assem_e_syntax_error);
end;
end;
{ // Constant reference expression // }
AS_MINUS,AS_NOT,AS_LPAREN:
Begin
{ if there was a variable prefix then }
{ add to offset instead. }
If var_prefix then
Begin
Inc(instr.operands[operandnum].ref.offset, BuildRefExpression);
end
else
Begin
instr.operands[operandnum].ref.offset :=BuildRefExpression;
end;
if not (actasmtoken in [AS_SEPARATOR,AS_COMMA]) then
Message(assem_e_invalid_operand_in_bracket_expression);
end;
{ // Constant reference expression // }
AS_INTNUM,AS_OCTALNUM,AS_BINNUM,AS_HEXNUM: Begin
{ if there was a variable prefix then }
{ add to offset instead. }
If var_prefix then
Begin
Inc(instr.operands[operandnum].ref.offset, BuildRefExpression);
end
else
Begin
instr.operands[operandnum].ref.offset :=BuildRefExpression;
end;
if not (actasmtoken in [AS_SEPARATOR,AS_COMMA]) then
Message(assem_e_invalid_operand_in_bracket_expression);
end;
{ // Variable reference expression // }
AS_REGISTER: BuildReference(instr);
else
Begin
Message(assem_e_invalid_reference_syntax);
while (actasmtoken <> AS_SEPARATOR) do
Consume(actasmtoken);
end;
end; { end case }
end;
Procedure BuildOperand(var instr: TInstruction);
{*********************************************************************}
{ EXIT CONDITION: On exit the routine should point to either the }
{ AS_COMMA or AS_SEPARATOR token. }
{*********************************************************************}
var
tempstr: string;
expr: string;
lab: Pasmlabel;
l : longint;
hl: plabel;
Begin
tempstr := '';
expr := '';
case actasmtoken of
{ // Constant expression // }
AS_PLUS,AS_MINUS,AS_NOT,AS_LPAREN:
Begin
if not (instr.operands[operandnum].operandtype in [OPR_NONE,OPR_CONSTANT]) then
Message(assem_e_invalid_operand_type);
instr.operands[operandnum].operandtype := OPR_CONSTANT;
instr.operands[operandnum].val :=BuildExpression;
end;
{ // Constant expression // }
AS_STRING: Begin
if not (instr.operands[operandnum].operandtype in [OPR_NONE]) then
Message(assem_e_invalid_operand_type);
instr.operands[operandnum].operandtype := OPR_CONSTANT;
if not PadZero(actasmpattern,4) then
Message1(assem_e_invalid_string_as_opcode_operand,actasmpattern);
instr.operands[operandnum].val :=
ord(actasmpattern[4]) + ord(actasmpattern[3]) shl 8 +
Ord(actasmpattern[2]) shl 16 + ord(actasmpattern[1])
shl 24;
Consume(AS_STRING);
Case actasmtoken of
AS_COMMA, AS_SEPARATOR: ;
else
Message(assem_e_invalid_string_expression);
end; { end case }
end;
{ // Constant expression // }
AS_INTNUM,AS_BINNUM,
AS_OCTALNUM,
AS_HEXNUM: Begin
if not (instr.operands[operandnum].operandtype in [OPR_NONE,OPR_CONSTANT]) then
Message(assem_e_invalid_operand_type);
instr.operands[operandnum].operandtype := OPR_CONSTANT;
instr.operands[operandnum].val :=BuildExpression;
end;
{ // A constant expression, or a Variable ref. // }
AS_ID: Begin
if actasmpattern[1] = '@' then
{ // Label or Special symbol reference // }
Begin
if actasmpattern = '@RESULT' then
Begin
InitAsmRef(instr);
SetUpResult(instr,operandnum);
end
else
if (actasmpattern = '@CODE') or (actasmpattern = '@DATA') then
Message(assem_w_CODE_and_DATA_not_supported)
else
Begin
delete(actasmpattern,1,1);
if actasmpattern = '' then
Message(assem_e_null_label_ref_not_allowed);
lab := labellist.search(actasmpattern);
{ check if the label is already defined }
{ if so, we then check if the plabel is }
{ non-nil, if so we add it to instruction }
if assigned(lab) then
Begin
if assigned(lab^.lab) then
Begin
instr.operands[operandnum].operandtype := OPR_LABINSTR;
instr.operands[operandnum].hl := lab^.lab;
instr.labeled := TRUE;
end;
end
else
{ the label does not exist, create it }
{ emit the opcode, but set that the }
{ label has not been emitted }
Begin
getlabel(hl);
labellist.insert(actasmpattern,hl,FALSE);
instr.operands[operandnum].operandtype := OPR_LABINSTR;
instr.operands[operandnum].hl := hl;
instr.labeled := TRUE;
end;
end;
Consume(AS_ID);
if not (actasmtoken in [AS_SEPARATOR,AS_COMMA]) then
Begin
Message(assem_e_syntax_error);
end;
end
{ probably a variable or normal expression }
{ or a procedure (such as in CALL ID) }
else
Begin
{ is it a constant ? }
if SearchIConstant(actasmpattern,l) then
Begin
if not (instr.operands[operandnum].operandtype in [OPR_NONE,OPR_CONSTANT]) then
Message(assem_e_invalid_operand_type);
instr.operands[operandnum].operandtype := OPR_CONSTANT;
instr.operands[operandnum].val :=BuildExpression;
end
else { is it a label variable ? }
Begin
{ // ID[ , ID.Field.Field or simple ID // }
{ check if this is a label, if so then }
{ emit it as a label. }
if SearchLabel(actasmpattern,hl) then
Begin
instr.operands[operandnum].operandtype := OPR_LABINSTR;
instr.operands[operandnum].hl := hl;
instr.labeled := TRUE;
Consume(AS_ID);
if not (actasmtoken in [AS_SEPARATOR,AS_COMMA]) then
Message(assem_e_syntax_error);
end
else
{ is it a normal variable ? }
Begin
initAsmRef(instr);
if not CreateVarInstr(instr,actasmpattern,operandnum) then
Begin
{ not a variable.. }
{ check special variables.. }
if actasmpattern = 'SELF' then
{ special self variable }
Begin
if assigned(procinfo._class) then
Begin
instr.operands[operandnum].ref.offset := procinfo.ESI_offset;
instr.operands[operandnum].ref.base := procinfo.framepointer;
end
else
Message(assem_e_cannot_use_SELF_outside_a_method);
end
else
Message1(assem_e_unknown_id,actasmpattern);
end;
expr := actasmpattern;
Consume(AS_ID);
case actasmtoken of
AS_LBRACKET: { indexing }
BuildBracketExpression(instr,TRUE);
AS_DOT: BuildRecordOffset(instr,expr);
AS_SEPARATOR,AS_COMMA: ;
else
Message(assem_e_syntax_error);
end;
end;
end;
end;
end;
{ // Register, a variable reference or a constant reference // }
AS_REGISTER: Begin
{ save the type of register used. }
tempstr := actasmpattern;
Consume(AS_REGISTER);
if actasmtoken = AS_COLON then
Begin
Consume(AS_COLON);
if actasmtoken <> AS_LBRACKET then
Message(assem_e_syn_start_with_bracket)
else
Begin
initAsmRef(instr);
instr.operands[operandnum].ref.segment := findsegment(tempstr);
BuildBracketExpression(instr,false);
end;
end
{ // Simple register // }
else if (actasmtoken = AS_SEPARATOR) or (actasmtoken = AS_COMMA) then
Begin
if not (instr.operands[operandnum].operandtype in [OPR_NONE,OPR_REGISTER]) then
Message(assem_e_invalid_operand_type);
instr.operands[operandnum].operandtype := OPR_REGISTER;
instr.operands[operandnum].reg := findregister(tempstr);
end
else
Message1(assem_e_syn_register,tempstr);
end;
{ // a variable reference, register ref. or a constant reference // }
AS_LBRACKET: Begin
BuildBracketExpression(instr,false);
end;
{ // Unsupported // }
AS_SEG,AS_OFFSET: Begin
Message(assem_e_SEG_and_OFFSET_not_supported);
Consume(actasmtoken);
{ error recovery }
While not (actasmtoken in [AS_SEPARATOR,AS_COMMA]) do
Consume(actasmtoken);
end;
AS_SEPARATOR, AS_COMMA: ;
else
Message(assem_e_syn_opcode_operand);
end; { end case }
end;
Procedure BuildConstant(maxvalue: longint);
{*********************************************************************}
{ PROCEDURE BuildConstant }
{ Description: This routine takes care of parsing a DB,DD,or DW }
{ line and adding those to the assembler node. Expressions, range- }
{ checking are fullly taken care of. }
{ maxvalue: $ff -> indicates that this is a DB node. }
{ $ffff -> indicates that this is a DW node. }
{ $ffffffff -> indicates that this is a DD node. }
{*********************************************************************}
{ EXIT CONDITION: On exit the routine should point to AS_SEPARATOR. }
{*********************************************************************}
var
strlength: byte;
expr: string;
value : longint;
Begin
strlength := 0; { assume it is a DB }
Repeat
Case actasmtoken of
AS_STRING: Begin
if maxvalue = $ffff then
strlength := 2
else if maxvalue = $ffffffff then
strlength := 4;
if strlength <> 0 then
{ DD and DW cases }
Begin
if Not PadZero(actasmpattern,strlength) then
Message(scan_f_string_exceeds_line);
end;
expr := actasmpattern;
Consume(AS_STRING);
Case actasmtoken of
AS_COMMA: Consume(AS_COMMA);
AS_SEPARATOR: ;
else
Message(assem_e_invalid_string_expression);
end; { end case }
ConcatString(p,expr);
end;
AS_INTNUM,AS_BINNUM,
AS_OCTALNUM,AS_HEXNUM:
Begin
value:=BuildExpression;
ConcatConstant(p,value,maxvalue);
end;
AS_ID:
Begin
value:=BuildExpression;
if value > maxvalue then
Begin
Message(assem_e_expression_out_of_bounds);
{ assuming a value of maxvalue }
value := maxvalue;
end;
ConcatConstant(p,value,maxvalue);
end;
{ These terms can start an assembler expression }
AS_PLUS,AS_MINUS,AS_LPAREN,AS_NOT: Begin
value := BuildExpression;
ConcatConstant(p,value,maxvalue);
end;
AS_COMMA: BEGIN
Consume(AS_COMMA);
END;
AS_SEPARATOR: ;
else
Begin
Message(assem_f_internal_error_in_buildconstant);
end;
end; { end case }
Until actasmtoken = AS_SEPARATOR;
end;
Procedure BuildOpCode;
{*********************************************************************}
{ PROCEDURE BuildOpcode; }
{ Description: Parses the intel opcode and operands, and writes it }
{ in the TInstruction object. }
{*********************************************************************}
{ EXIT CONDITION: On exit the routine should point to AS_SEPARATOR. }
{ On ENTRY: Token should point to AS_OPCODE }
{*********************************************************************}
var asmtok: tasmop;
op: tasmop;
expr: string;
segreg: tregister;
Begin
expr := '';
asmtok := A_NONE; { assmume no prefix }
segreg := R_NO; { assume no segment override }
{ // prefix seg opcode // }
{ // prefix opcode // }
if findprefix(actasmpattern,asmtok) then
Begin
{ standard opcode prefix }
if asmtok <> A_NONE then
instr.addprefix(asmtok);
Consume(AS_OPCODE);
if findoverride(actasmpattern,segreg) then
Begin
Consume(AS_OPCODE);
Message(assem_w_repeat_prefix_and_seg_override);
end;
end
else
{ // seg prefix opcode // }
{ // seg opcode // }
if findoverride(actasmpattern,segreg) then
Begin
Consume(AS_OPCODE);
if findprefix(actasmpattern,asmtok) then
Begin
{ standard opcode prefix }
Message(assem_w_repeat_prefix_and_seg_override);
if asmtok <> A_NONE then
instr.addprefix(asmtok);
Consume(AS_OPCODE);
end;
end;
{ // opcode // }
if (actasmtoken <> AS_OPCODE) then
Begin
Message(assem_e_invalid_or_missing_opcode);
{ error recovery }
While not (actasmtoken in [AS_SEPARATOR,AS_COMMA]) do
Consume(actasmtoken);
exit;
end
else
Begin
op := findopcode(actasmpattern);
instr.addinstr(op);
{ // Valid combination of prefix and instruction ? // }
if (asmtok <> A_NONE) and (NOT CheckPrefix(asmtok,op)) then
Message1(assem_e_invalid_prefix_and_opcode,actasmpattern);
{ // Valid combination of segment override // }
if (segreg <> R_NO) and (NOT CheckOverride(segreg,instr)) then
Message1(assem_e_invalid_override_and_opcode,actasmpattern);
Consume(AS_OPCODE);
{ // Zero operand opcode ? // }
if actasmtoken = AS_SEPARATOR then
exit
else
operandnum := 1;
end;
While actasmtoken <> AS_SEPARATOR do
Begin
case actasmtoken of
{ // Operand delimiter // }
AS_COMMA: Begin
if operandnum > MaxOperands then
Message(assem_e_too_many_operands)
else
Inc(operandnum);
Consume(AS_COMMA);
end;
{ // Typecast, Constant Expression, Type Specifier // }
AS_DWORD,AS_BYTE,AS_WORD,AS_TBYTE,AS_QWORD: Begin
Case actasmtoken of
AS_DWORD: instr.operands[operandnum].size := S_L;
AS_WORD: instr.operands[operandnum].size := S_W;
AS_BYTE: instr.operands[operandnum].size := S_B;
AS_QWORD: instr.operands[operandnum].size := S_Q;
AS_TBYTE: instr.operands[operandnum].size := S_X;
end;
Consume(actasmtoken);
Case actasmtoken of
{ // Reference // }
AS_PTR: Begin
initAsmRef(instr);
Consume(AS_PTR);
BuildOperand(instr);
end;
{ // Possibly a typecast or a constant // }
{ // expression. // }
AS_LPAREN: Begin
if actasmtoken = AS_ID then
Begin
{ Case vartype of }
{ LOCAL: Replace by offset and }
{ BP in treference. }
{ GLOBAL: Replace by mangledname}
{ in symbol of treference }
{ Check if next token = RPAREN }
{ otherwise syntax error. }
initAsmRef(instr);
if not CreateVarInstr(instr,actasmpattern,
operandnum) then
Begin
Message1(assem_e_unknown_id,actasmpattern);
end;
end
else
begin
instr.operands[operandnum].operandtype := OPR_CONSTANT;
instr.operands[operandnum].val := BuildExpression;
end;
end;
else
BuildOperand(instr);
end; { end case }
end;
{ // Type specifier // }
AS_NEAR,AS_FAR: Begin
if actasmtoken = AS_NEAR then
Message(assem_w_near_ignored)
else
Message(assem_w_far_ignored);
Consume(actasmtoken);
if actasmtoken = AS_PTR then
begin
initAsmRef(instr);
Consume(AS_PTR);
end;
BuildOperand(instr);
end;
{ // End of asm operands for this opcode // }
AS_SEPARATOR: ;
{ // Constant expression // }
AS_LPAREN: Begin
instr.operands[operandnum].operandtype := OPR_CONSTANT;
instr.operands[operandnum].val := BuildExpression;
end;
else
BuildOperand(instr);
end; { end case }
end; { end while }
end;
Function Assemble: Ptree;
{*********************************************************************}
{ PROCEDURE Assemble; }
{ Description: Parses the intel assembler syntax, parsing is done }
{ according to the rules in the Turbo Pascal manual. }
{*********************************************************************}
Var
hl: plabel;
labelptr: pasmlabel;
Begin
Message(assem_d_start_intel);
inexpression := FALSE;
firsttoken := TRUE;
operandnum := 0;
{ sets up all opcode and register tables in uppercase }
if not _asmsorted then
Begin
SetupTables;
_asmsorted := TRUE;
end;
p:=new(paasmoutput,init);
{ setup label linked list }
labellist.init;
c:=asmgetchar;
actasmtoken:=gettoken;
while actasmtoken<>AS_END do
Begin
case actasmtoken of
AS_LLABEL: Begin
labelptr := labellist.search(actasmpattern);
if not assigned(labelptr) then
Begin
getlabel(hl);
labellist.insert(actasmpattern,hl,TRUE);
ConcatLabel(p,A_LABEL,hl);
end
else
{ the label has already been inserted into the }
{ label list, either as an intruction label (in }
{ this case it has not been emitted), or as a }
{ duplicate local symbol (in this case it has }
{ already been emitted). }
Begin
if labelptr^.emitted then
Message1(assem_e_dup_local_sym,'@'+labelptr^.name^)
else
Begin
if assigned(labelptr^.lab) then
ConcatLabel(p,A_LABEL,labelptr^.lab);
labelptr^.emitted := TRUE;
end;
end;
Consume(AS_LLABEL);
end;
AS_LABEL: Begin
if SearchLabel(actasmpattern,hl) then
ConcatLabel(p,A_LABEL, hl)
else
Message1(assem_e_unknown_label_identifer,actasmpattern);
Consume(AS_LABEL);
end;
AS_DW: Begin
Consume(AS_DW);
BuildConstant($ffff);
end;
AS_DB: Begin
Consume(AS_DB);
BuildConstant($ff);
end;
AS_DD: Begin
Consume(AS_DD);
BuildConstant($ffffffff);
end;
AS_OPCODE: Begin
instr.init;
BuildOpcode;
instr.numops := operandnum;
if instr.labeled then
ConcatLabeledInstr(instr)
else
ConcatOpCode(instr);
end;
AS_SEPARATOR:Begin
Consume(AS_SEPARATOR);
{ let us go back to the first operand }
operandnum := 0;
end;
AS_END: ; { end assembly block }
else
Begin
Message(assem_e_assemble_node_syntax_error);
{ error recovery }
Consume(actasmtoken);
end;
end; { end case }
end; { end while }
{ check if there were undefined symbols. }
{ if so, then list each of those undefined }
{ labels. }
if assigned(labellist.First) then
Begin
labelptr := labellist.First;
if labellist.First <> nil then
Begin
{ first label }
if not labelptr^.emitted then
Message1(assem_e_unknown_local_sym,'@'+labelptr^.name^);
{ other labels ... }
While (labelptr^.Next <> nil) do
Begin
labelptr := labelptr^.Next;
if not labelptr^.emitted then
Message1(assem_e_unknown_local_sym,'@'+labelptr^.name^);
end;
end;
end;
assemble := genasmnode(p);
labellist.done;
Message(assem_d_finish_intel);
end;
Begin
old_exit:=exitproc;
exitproc:=@rai386_exit;
end.
{
$Log: rai386.pas,v $
Revision 1.2.2.1 1998/05/25 22:58:50 carl
* single operand bugfixes
Revision 1.2 1998/03/31 15:21:01 florian
* fix of out (intel syntax) applied
Revision 1.1.1.1 1998/03/25 11:18:15 root
* Restored version
Revision 1.19 1998/03/24 21:48:34 florian
* just a couple of fixes applied:
- problem with fixed16 solved
- internalerror 10005 problem fixed
- patch for assembler reading
- small optimizer fix
- mem is now supported
Revision 1.18 1998/03/10 01:17:26 peter
* all files have the same header
* messages are fully implemented, EXTDEBUG uses Comment()
+ AG... files for the Assembler generation
Revision 1.17 1998/03/09 12:58:12 peter
* FWait warning is only showed for Go32V2 and $E+
* opcode tables moved to i386.pas/m68k.pas to reduce circular uses (and
for m68k the same tables are removed)
+ $E for i386
Revision 1.16 1998/03/04 17:33:56 michael
+ Changed ifdef FPK to ifdef FPC
Revision 1.15 1998/03/03 22:38:26 peter
* the last 3 files
Revision 1.14 1998/03/02 01:49:15 peter
* renamed target_DOS to target_GO32V1
+ new verbose system, merged old errors and verbose units into one new
verbose.pas, so errors.pas is obsolete
Revision 1.13 1998/02/13 10:35:38 daniel
* Made Motorola version compilable.
* Fixed optimizer
Revision 1.12 1998/02/12 11:50:36 daniel
Yes! Finally! After three retries, my patch!
Changes:
Complete rewrite of psub.pas.
Added support for DLL's.
Compiler requires less memory.
Platform units for each platform.
Revision 1.11 1998/02/07 18:02:36 carl
+ fwait warning for emulation
Revision 1.10 1998/01/19 03:11:40 carl
* bugfix number 78
Revision 1.9 1998/01/09 19:22:51 carl
* bugfix of __ID variable names
Revision 1.8 1997/12/09 14:00:25 carl
* bugfix of intr reg,reg instructions, size must always be specified
under gas (ref: DJGPP FAQ)
* bugfix of concatopcode with fits init twice!
+ unknown instr. only poermitted when compiling system unit and/or
target processor > i386
Revision 1.7 1997/12/04 12:20:50 pierre
+* MMX instructions added to att output with a warning that
GNU as version >= 2.81 is needed
bug in reading of reals under att syntax corrected
Revision 1.6 1997/11/28 18:14:45 pierre
working version with several bug fixes
Revision 1.5 1997/11/28 15:43:20 florian
Fixed stack ajustment bug, 0.9.8 compiles now 0.9.8 without problems.
Revision 1.4 1997/11/28 15:31:59 carl
* uncommented firstop and lastop. (otherwise can cause bugs)
Revision 1.3 1997/11/28 14:26:22 florian
Fixed some bugs
Revision 1.2 1997/11/28 12:03:53 michael
Changed comment delimiters to braces, causes problems with 0.9.1
Changed use of ord to typecast with longint.
Made boolean expressions non-redundant.
Revision 1.1.1.1 1997/11/27 08:33:00 michael
FPC Compiler CVS start
Pre-CVS log:
CEC Carl-Eric Codere
FK Florian Klaempfl
PM Pierre Muller
+ feature added
- removed
* bug fixed or changed
9th november 1997:
+ first working version with main distribution line of FPC (CEC)
12th november 1997:
* bugfix of CALL and JMP with symbolic references. (CEC)
13th november 1997:
* too many bugfixes/improvements to name... (CEC)
* Fixed range check, line numbering, missing operand checking
bugs - range checking must be off to compile under tp. (CEC)
+ speed improvement of 30% over old version with global look up tables.
14th november 1997:
+ added support for record/object offsets. (CEC)
* fixed bug regarding ENTER and push imm8 instruction(CEC)
+ fixed conflicts with fpu instructions. (CEC).
}